FFR-Guided Decision, IVUS-Guided Optimization of Left Main PCI

Soo-Jin Kang, MD., PhD.

University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

Disclosure

I have nothing to disclose

UNIVERSITY OF ULSAN COLLEGE MEDICINE

Treatment strategy (deferral vs. revascularization) should be based on "Functional significance"

Author	Comparison	Results	р
Lindstaedt ¹	CABG (FFR< <mark>0.75</mark>) vs. Medical (≥0.80)	4-year Survival 81% vs. 100% MACE-free 66% vs. 69%	NS
Jasti ²	CABG (FFR< <mark>0.75</mark>) vs. Medical (≥0.75)	38-month Survival 100% vs. 100% MACE-free 100% vs. 90%	
Courtis ³	Revasc (FFR< <mark>0.75</mark>) vs. Medical (≥ <mark>0.80</mark>)	14-month MACE 7% vs. 13%	NS
Bech⁴	Revasc (FFR<0.75) vs. Medical (≥0.75)	29-month Survival 100% vs. 97% MACE-free 83% vs.76%	NS
Hamilos ⁵	CABG (FFR< <mark>0.80</mark>) vs. Medical (≥0.80)	5-year Survival 85% vs. 90% MACE-free 74% vs. 82%	NS

¹Am Heart J 2006;152:156, ²Circulation 2004;110:2831–6, ³Am J Cardiol 2009;103:943-9 ⁴Heart 2001;86:547-52, ⁵Circulation 2009;120:1505-12

QCA DS Cannot Predict Neither Real Morphology Nor FFR

QCA DS Poorly Predicts LM FFR

DS 50% Sensitivity 26% Specificity 92% Accuracy 75%

Hamilos et al. Circulation 2009;120:1505-12

DS 48%

100-Specificity

20

40

AUC 0.65, p=0.07

80

100

95%CI 0.50-0.78

60

Sensitivity 51% Specificity 75% Accuracy 65%

AMC data

QCA-FFR Discordance: LM vs. Non-LM

63 LM lesions

1066 Non-LM lesions

Angiographic underestimation of stenosis degree Relatively large myocardial territory of LM

AMC data

IVUS-MLA Predicting LM FFR< 0.80</th>Pure LM lesion of DS 30-80%, exclude distal stream diseaseNon-LMPure LM Disease

Sensitivity=90% Specificity=60% Accuracy=68%

Sensitivity 89% Specificity 83% Accuracy 86%

Morphologic Simplicity of Pure LM Lesion uniformly large vessel, short lesion length, lack of sidebranch

COLLEGE MEDICIN

Visual-Functional Discordance in LM Disease

IVUS-MLA vs. FFR

QCA DS vs. FFR

CardioVascular Research Foundation

COLLEGE MEDICINE

ASAN Medical Cente

14% are still misclassified with MLA Cut-off47/M Stable angina50/M Stable angina

Bifurcation Lesions in Majority...

Oviedo et al. Circ Cardiovasc Interv 2010;3:105-12

FFR measurement is necessary to decide to treat or not to treat for LM bifurcation

Complex 2 stents

Non-distal (Ostial and Shaft)

 Simple (single stent cross over) In LM bifurcation lesions

Single Stent Cross Over is Clearly better !

Stent Strategy for LM Bifurcation

Single	 Normal ostial LCX (Medina 1.1.0., 1.0.0) Small LCX with < 2.5 mm in diameter Diminutive LCX Normal or focal disease in distal LCX
Two	 Diseased LCX (Medina 1.1.1., 1.0.1) Large LCX with ≥ 2.5 mm in diameter Diseased left dominant coronary system Concomitant diffuse disease in distal LCX

Park SJ, Kim YH. Colombo A, Issam D. Moussa et al. Textbook of Bifurcation Stenting

LCX pullback

LAD pullback

Two Xience Mini-Crush

LCX pullback

LAD pullback

Plaque Burden of SB Ostium Measured by MB-Pullback is Only Moderately Reliable

Direct LCX pullback is necessary for the accurate assessment of side branch ostium

Oviedo et al. Am J Cardiol 2010;105:948-54

Pre-PCI LCX IVUS vs. FFR

Most have proximal LM disease

LCX-IVUS

LCX-FFR

Advantage
 Clearly demonstrate
 LCX ostial disease MLA, PB, remodeling

 functional significance only in isolated SB stenosis

MLA-FFR mismatch

Pitfalls • No MLA criteria of SB

Low feasibility

 cannot predict geometric change of SB post-stenting

Plaque Redistribution After Cross-Over Pre-PCI After Cross-Over **LCX FFR=0.85** 9.6 mm, 1 mm/div 9.6 mm, 1 mm/div **Strut Artifact** After Cross-Over (Novori)

LCX-MLA 8.4mm²

LCX-MLA 8.3mm²

Changes in LCX Ostial Geometry After a Single Stent Cross-over

In a minority, plaque redistribution may be superimposed on carina shift to contribute to the further lumen loss at the ostial LCX

IVUS Cannot Predict LCX FFR

Correlation between IVUS-MLA vs. Post-stenting FFR

AMC data, preliminary

Treatment for Angiographically Jailed SB FFR >0.75 is safe for deferral in non-LM disease

Use of LCX-IVUS vs. FFR After LM Cross-over

	LCX-pullback IVUS	LCX FFR
Advantage	 support the anatomical change, MLA loss Mechanism of SB jailing 	 Confirm the functional SB compromise
Pitfalls	 MLA-FFR mismatch No MLA criteria for FFR Low feasibility 	 Minority - not feasible Impact on outcomes is not clear in LM disease

LM Stent Optimization

Between Mar 2003 - May 2009, 450 patients with LM disease underwent SES implantation and 9-mo angio surveillance

22 kissing
3 LM-LCX cross-over
22 without IVUS data

403 patients treated with SES implantation for LM *All had post-stenting IVUS and 9-mo angiography*

Single-stent (n=289)

Non-bifurcation (n=67)

Bifurcation with Single-stent (n=222) Two-stent (n=114)

Bifurcation with Two-stent (including 99 crushing, 15 T-stent)

Kang et al. Circ Cardiovasc Interv 2011;4:1168-74

Kang et al. Circ Cardiovasc Interv 2011 2011;4:1168-74

Stent Optimization

on a segmental basis

Kang et al. Circ Cardiovasc Interv 2011 2011;4:1168-74

Frequency of Underexpansion and ISR

33.8% had underexpansion of at least one stented segment

Two-stent

(%) 50 40 30 20 10 10 LCX LAD POC Prox LM

54% had underexpansion in at least one of the 4 stented segments

Single-stent

single-stent vs. two-stent, p<0.05

27% had underexpansion in at least one of the 3 stented segments

Control Control Control Control Service Survival 2-year MACE 4.8% at 23.8±3.2 months (median 24 months)

TLR 4.1%, Cardiac death 1%, AMI (VLST) 0.5%

Kang et al. Circ Cardiovasc Interv 2011 2011;4:1168-74

ASAN Medical Center

 IVUS optimization with the MSA criteria may improve the long-term clinical outcomes

